Archivo de la etiqueta: Universo

La energía obscura y la vida en el Universo.

En el Universo se dieron condiciones favorables para la vida tal como la conocemos.
La energía obscura es la encargada de expandir aceleradamente el Universo en el que nacimos. Aunque su naturaleza aún se discute, tuvo un papel importante en la aparición de la vida (pdp, 05/ago./2018, Sobre el origen de la enegía obscura, https://paolera.wordpress.com/2018/08/05/sobre-el-origen-de-la-energia-obscura/).

De haber sido menor, el Universo hubiese recolapsado. De haber sido mayor, la expansión no hubiese permitido la formación de átomos estables.
Su valor, permite la expansión a gran escala, y a escalas pequeñas, permitió la formación de átomos, luego de moléculas y de complejos gaseosos donde nacieron estrellas. Las masivas retornaron material enriquecido al Espacio de donde nacieron estrellas de segunda generación (como el Sol). A su alrededor se generaron planetas y al menos en el Nuestro, se dio la vida.

Si bien las condiciones se dieron físicamente en forma aleatoria, se investigó entre qué valores la energía obscura resultó favorable a la aparición de la vida.
Según los modelos actuales y datos observados, tales como la masa total y constates físicas Universales, la energía obscura es muchísimo menor a la esperada (unas 10-120 veces, o sea 120 órdenes de magnitud inferior).
Coincidentemente, la masa de neutrinos en el Universo es menor a la esperada – ¿hay relación? – para algunos, sí, la hay
Las simulaciones mostraron que si se aumenta la energía obscura a valores muy altos, por ejemplo más del valor esperado, igualmente se tendrían estrellas, en menor cantidad, pero sólo un 15% menos.

Video: Could a Multiverse be hospitable to life?

Publicado el 14 may. 2018

Luego hay un rango muy amplio en el que la energía obscura es favorable a las condiciones de aparición de la vida. Así las cosas, la energía obscura no tuvo mayor influencia en Nuestra aparición en el Universo.

Si existen otros Universos y en ellos hay energía obscura como en el Nuestro, y si suponemos que el valor de éstas es aleaorio, entonces, teniendo en cuenta el amplio rango de valores favorables para aparición de vida, en ellos es altamente probable la aparición o existencia de la vida; eso si la naturaleza de esos Universos no es diferente a la del Nuestro.

Referencia:

Fuentes:

pdp.

Anuncios

¿Cuál es la mayor distancia esperada para un objeto en el Univesro?

El Año Luz (AL) es la distancia que recorre la luz en un año viajando a 300 mil Km./seg.
Así, si la luz de un objeto tarda en llegarnos cierto tiempo t expresado en años, decimos que está a una distancia dada por t AL.
Si el Universo nació hace unos 14 mil millones de años (13800 millones), un objeto nacido con Él y moviéndose a la velocidad de la luz estará a unos 14 mil millones de AL de nosotros.
Así, en primera instancia, esa sería la mayor distancia esperada para un objeto.

File:NASA-HS201427a-HubbleUltraDeepField2014-20140603.jpg

Galaxias distantes – Crédito: Hubble Team, Space Telescope

Pero resulta que los objetos no están quietos. Si su luz tardó t años en llegarnos, en ese tiempo se habrá movido otros t AL; luego el objeto más lejano podría estar a unos 28 mil millones de AL (27600 millones).
Pero hay objetos a unos 30 mil millones de AL, como por ejemplo la galaxia GN-z11 (https://es.wikipedia.org/wiki/GN-z11).

Cuando hablamos de altas velocidades como la de la luz, se dan efectos relativísticos. Uno de ellos es el conocido como contracción de las barras. A altas velocidades, las dimensiones en la dirección del movimiento se acortan, no así las perpendiculares a él.
Cuando medimos la distancia a un objeto lejano alejándose a gran velocidad, sucede este efecto. Si corregimos por Relatividad, la distancia es mayor. Luego, en este caso, la máxima distancia pasa a ser 3 veces la observada; así tenemos que la máxima distancia esperada sería de 41 mil millones de AL (41400 millones, es decir 3 veces 13800 millones).
Pero recordemos que el Universo se expande. Eso hace que nuestra “regla” quede fuera de escala porque ella no se estira con el espacio que mide. Así, ahora, la máxima distancia esperada es mayor aún. Pero queda algo más a tener en cuenta.

La curvatura del espacio-tiempo por la presencia de grandes estructuras masivas.
La distancia a gran escala, deja de ser la longitud de la recta entre dos puntos para ser la longitud de la curva que los une. Haciendo las cuentas involucradas, el resultado para la mayor distancia esperada es de 46 mil millones de AL.

Pensemos.
De esta manera, el Universo es de 92 mil millones de AL de “ancho”. La observación de la radiación de fondo en micro-ondas, originada en el Big Bang, está por todo el cielo. Eso indica que la luz recorrió todo el Universo desde que comenzó hasta Hoy.
Luego, recorrió el Universo de un extremo al otro, en el tiempo en que debía haber recorrido sólo la distancia a un extremo; o sea ¿cómo pudo la luz recorrer el doble de lo que podía haber recorrido en lo que va del Universo?
A esto se lo conoce como el problema de horizontes.
Tal vez la luz tenía una mayor velocidad en aquellos tiempos cuando todo comenzó (pdp, 24/nov./2016, El problema de horizontes, https://paolera.wordpress.com/2016/11/24/el-problema-de-horzontes-y-la-velocidad-de-la-luz/)

Referencia:

pdp.

El telescopio espacial James Webb podría confirmar la estructura de la materia obscura.

La elusiva materia obscura podría mostrar interacciones no gravitatorias con la materia ordinaria de los albores de Universo.

Esta materia es la que mantiene unida a las galaxias. En sus filamentos colapsó la materia ordinaria dando origen a las estructuras galácticas, las que son enjambres enormes de estrellas que conviven con materia ordinaria.

Video: The first stars turning on in the Universe.

Ethan Siegel
Publicado el 23 ene. 2015.
Animation / simulation by NASA’s Spitzer Space Telescope team of the formation of the first stars in the Universe.

Pero la materia obscura sólo interactúa con la ordinaria en forma gravitacional, de ahí su calificativo de obscura. Lamentablemente al menos hasta ahora no se observó ni detectó materia obscura que no sea por su acción gravitatoria.

Sabemos que los eventos ultralejanos, se dieron en el origen del Universo. También sabemos que la energía o radiación proveniente de esos eventos o de las fuentes involucradas, llega a nosotros “corrida” a longitudes de onda mucho mayores por un efecto relativístico. Así es como vigorosos eventos energéticos ultralejanos dados en longitudes de onda cortas, nos llegan en longitudes de onda mayores, en el infrarrojo, infrarrojo cercano y más allá; en luz donde nuestros telescopios no son sensibles.
Nos estamos perdiendo una ventana de observación.

El Universo es activo en la longitud de onda de 21 cm. observable con radiotelescopios. En esa longitud de onda el Hidrógeno emite naturalmente.
Las nubes de Hidrógeno lejanas, las primeras en darse en el Universo, envían esa actividad en 21 cm. la que nos llega corrida más aún hacia longitudes de onda mayores.
En observaciones del Universo joven realizadas en esas longitudes de onda, se detectó radiación estelar de cuando el Universo tenía apenas 180 millones de años de edad.
Aquí hay un enorme descubrimiento, las primeras estrellas ultralejanas.

Además, estas estrellas están interactuando con el Hidrógeno que las rodea. Analizando esos escenarios, se detectó que el Hidrógeno irradió en esa frecuencia entre los 180 millones y 260 millones de años de edad del Universo. Lo sorprendente es que estaba más frío de lo esperado.
Los modelos actuales (standard) no explican esa menor temperatura observada. Algo se está escapando en los modelos standard. Así, surge la idea de que ese proceso de enfriamiento se deba a interacciones del Hidrógeno primordial (materia ordinaria) con materia obscura.
De ser así, sería la primera evidencia de interacción entre ambos tipos de materia que no sea de manera gravitacional. Pero esto debe confirmarse con observaciones hechas en esa ventana que nos estamos perdiendo.

El telescopio espacial James Webb, aún en tierra, será sensible a las longitudes de onda del infrarrojo necesarias para obtener datos del Universo en esa ventana observacional que nos estamos perdiendo.
Luego, este instrumento podría llevar a otro gran descubrimiento: la interacción no gravitatoria entra la materia obscura y la ordinaria en los albores del Universo, lo que está relacionado con las partículas componentes de la materia obscura y sus propiedades.
Cha, cha, cha, chaaaaaaaannnn…. (continuará).

Referencia:

Fuente:

pdp.

Sobre distancias y velocidades de las galaxias (estimando el Universo)

La Astronomía nos ubica en el Universo.
Primero nos sacó del centro del Sistema Solar y luego del de la Vía Láctea. Ahora estamos viendo hasta dónde llega el Universo, las distancias involucradas a las galaxias más lejanas; sus movimientos.
Al principio se midieron las distancias a las galaxias más cercanas y sus velocidades. Resultó que se alejaban y eso no fue todo. Se escapaban más rápido con la distancia. Ahí nació la constante de expansión de Hubble, que nos dice la velocidad de alejamiento en función de la lejanía. Luego, sabiendo que ciertas estrellas variables tienen un brillo intrínseco, se las usó como candelas para estimar las distancias. Midiendo su brillo aparente, se puede saber en base al intrínseco, la distancia a la galaxia donde se encuentra. En base a esa distancia se esperaba que tengan una velocidad de alejamiento dada por la constante de Hubble, pero resultó que se escapaban con mayor velocidad. Apareció la aceleración dada por la energía obscura.
Ahora hay modelos basados en la materia obscura que nos dan la probabilidad de hallar una galaxia a cierta distancia, a esa colección de estimaciones se la conoce como escala de distancia inversa, escala de distancia cósmica o escala de distancia extragaláctica (cosmic distance ladder – https://en.wikipedia.org/wiki/Cosmic_distance_ladder).

Esquema de evolución del Universo crédito de C. FAUCHER-GIGUÈRE, A. LIDZ, AND L. HERNQUIST, SCIENCE 319, 5859 (47)

El problema de las distancias y velocidades no es sencillo a grandes escalas.
Sabemos que cuando vemos un objeto muy lejano, lo vemos como era hace mucho tiempo atrás debido al tiempo que tarda en llegarnos la luz. Luego, en el caso de una galaxia, la observamos joven a una cierta distancia con cierta velocidad de alejamiento. Pero en todo ese tiempo que tardó en llegarnos su imagen, ésta se alejó más. Ahora, ¿dónde está?, ¿cómo se mueve?.
Sólo podemos conjeturar respuestas en base a los modelos que tenemos. Éstos se pueden extrapolar, suponer que las cosas mantienen sus propiedades con el tiempo, pero… ¿hasta dónde o cuándo? No nos olvidemos que a cierta distancia las cosas se alejaban todas con la misma velocidad, luego con mayores y a mayor distancia hay aceleración. Donde unos métodos son buenos, otros fallan, hay errores involcrados y todos dependen de las tan preciadas distancias y velocidades buscadas.

No es fácil.
Es sutil y fascinate.

Referencia:

pdp.

El origen de la materia en el Universo (rompiendo simetrías).

Artículo corregido el 10/ago./2018 a las 14:45 HOA (GMT -3).
En el Universo apareció la materia de la que todo está hecho, incluso nosotros, cuando dejaron de valer ciertas condiciones.
En la Naturaleza hay simetrías. Éstas son condiciones que se cumplen (o deberían hacerlo) en diversas situaciones (https://es.wikipedia.org/wiki/Simetr%C3%Ada_en_f%C3%Adsica).

Llama la atención la ausencia de antimateria en Universo. Se congetura que cuando apareció la materia, las leyes Físicas no eran las mismas para la materia que para la antimateria y, por falta de simetrías, la antimateria se aniquiló con parte de materia generando otras partículas (pdp, 09/mar./2017, La violación CP explica la abundancia de materia sobre la antimateria, https://paolera.wordpress.com/2017/03/09/la-violacion-cp-explica-la-abundancia-de-materia-sobre-la-antimateria/).

También resulta llamativo la existencia de partículas sin masa.
¿Puede existir una partícula si no tiene masa?
Sí, puede.
Cuando vemos la conocida ecuación E=mC2, donde m es la masa de un objeto y C la velocidad de la luz, resulta que E es la emergía almacenada en esa masa, o sea la necesaria para crearla; luego, la masa es una forma de energía. O sea que una partícula puede existir en forma de energía almacenada de alguna manera y aparecer con masa cuando se mueve a la velocidad de la luz. Por ejemplo: el fotón (partícula de luz – energía), que en reposo no tiene masa y la adquiere cuando aparece con velocidad C. Otra partícula sin masa en reposo es el gluón, que sirve de unión (glue = pegamento en inglés) entra quarks para formar neutrones.

¿Pero de donde provino la materia del Universo?
Veamos.

Ilustración de evolución del Universo. Nada de esto se habría dado sin la aparición de la materia. Crédito: NASA / CXC / M. WEISS

Cuando el Universo se expandió en el Big-Bang, éste comenzó a generar trama de espacio – tiempo. En ese proceso aumentó la energía obscura pero a cambio otros niveles de energía comenzaron a disminuir, proceso por el cual el Universo aceleraba su expansión mientras se enfriaba (pdp, 05/ago./2018, Sobre el origen de la energía obscura, https://paolera.wordpress.com/2018/08/05/sobre-el-origen-de-la-energia-obscura/).

Entre los niveles energía que disminuían estaba la del campo de Higgs (en honor a Peter Higgshttps://es.wikipedia.org/wiki/Peter_Higgs). Debajo de un determinado valor, muy pequeño aunque no nulo, comenzaron a romperse ciertas simetrías. En esas condiciones, de la energía almacenada en el campo de Higgs, se produjeron 4 eventos.
De dos de ellos se generaron partículas con masa y con cargas eléctricas. De las otras dos se generaron partículas sin carga; una fue el fotón sin masa en reposo y la otra ganó masa dando origen al bosón de Higgs. Luego, moviéndose y chocando a gran velocidad, todas ellas fueron generando la materia y las estructuras de ella que hoy observamos.

Fuente:

pdp.

¿En el Multiverso hay muchos Universos?

La Física Cuántica, analiza los escenarios microscópicos.
En esos ambientes donde las partículas son las que dominan, éstas pueden comportarse como tales o como ondas, y la energía está discretizada; o sea que puede tomar ciertos valores, no cualesquiera.

En la búsqueda de cómo nació el Universo, el modelo se va actualizado a medida que se van descubriendo nuevos elementos más sofisticados.
Así es como para explicar el origen del Todo, la cuántica colaboró en la explicación del origen de las partículas que conforman la materia. Como éstas se comportan como ondas, apareció la Teoría de Cuerdas (https://www.astrobitacora.com/teoria-de-cuerdas/), la que dio paso a la de Branas (o menbranas). Esta teoría admite varias soluciones, cada una corresponde a un Universo, luego existiría un Multiverso, dentro del cual está el nuestro.

Ilustración crédito de Shutterstock/Juergen Faelchle.

Es más, la mancha fría observada en la radiación de fondo de micro-ondas, según los adeptos a este modelo de Multiversos, podría ser un punto de contacto entre nuestro Universo y otro adyacente (pdp, 26/abr./2017, Quizás un Universo exótico necesite una explicación exótica, https://paolera.wordpress.com/2017/04/26/quizas-un-universo-exotico-necesite-una-explicacion-exotica/).

Pero sucede que la cantidad de soluciones implican una gran cantidad de Universos, ¿cuántos?, bien, 10500, o sea un 1 con 500 ceros. ¿Esos son muchos Universos o pocos? ¿Tenemos idea de lo que estamos diciendo?

Aquí es donde las opiniones se dividen.
Veamos.

Por un lado, están los que piensan que no se puede explicar las características de nuestro Universo en forma satisfactoria entre tantos Universos. En un Multiverso tan poblado, cada uno de los Universos (y el Nuestro) serían una situación aleatoria. Es decir que la Física en cada Universo sería diferente y al azar. Más; muchos de ellos serían matemáticamente inconsistentes, y por lo tanto, prohibidos.

Por otro lado, están los que aceptan eso y piensan que todos esos Universos serían posibles; después de todo, no sería la primera vez que se observa orden en el caos de la aleatoriedad.
Hay diferentes tipos de estrellas, incluso de las más exóticas (de neutrones, agujeros negros y asociaciones de diferentes tipos). Todo depende de su masa y ese valor es un valor aleatorio.
Los planetas se encuentran a determinadas distancias de sus estrellas, lo que está dado por las leyes de Kepler (https://www.fisicalab.com/apartado/leyes-kepler#contenidos). Pero esas distancias dependen de la masa y velocidad de cada planeta, lo que se dio al azar en su formación.
Luego, extrapolando esto, no sería raro un Multiverso con características aleatorias donde se dan estabilidades y eventos que implican energías de varios tipos, incluso la obscura (responsable de la aceleración en la expansión del Nuestro.)

Bien… el debate continua y eso es muy bueno.

Referencia:

Fuentes:

pdp.

El Universo tendría estructura Fractal.

Un Fractal es una estructura que se contiene a sí misma.
O sea que, si tomamos una parte de esa estructura y la ampliamos, veremos que es igual a toda la estructura; y así sucesivamente.

julia_set_ice

Imagen fractal publicada en http://forumi.shqiperia.com

Si observamos galaxias cada vez más lejos, veremos que se agrupan en grupos, los que a su vez se agrupan en súper grupos. Todo forma una estructura donde los grupos de galaxias aparecen dentro de cordones de materia como perlas en un collar. A su vez, a mayor escala, hay murallas, gigantescas estructuras galácticas.
Todo dominado por la materia obscura y la energía obscura, parece expandirse constantemente.
Según nuevos estudios, la materia del Univesro: Galaxias, materia observable y obscura, estaría dispuesta en una estructura de tipo fractal.
La distribución homogénea de la materia en el Universo, permitía suponer una expansión que aumentaba con el cuadrado de la distancia. Viendo que la distribución no es homogénea, la suposición de que es de tipo fractal, ofrece una alternativa a la explicación del comportamiento de la expansión.
Corrección del 25/oct./2016 10:15 HOA (GMT -3): En realidad, ofrece una alternativa a la explicación del alejamento de las galaxias distantes (ley de Hubble)

Nota del 25/oct./2016 a las 10:05 HOA (GMT -3).
En el caso de la distribución fractal de materia, la ley de Hubble no necesita de la expansión Universal para ser explicada.

Referencias:

Fuente:

pdp.