Archivo de la etiqueta: Luna

La gran masa bajo el cráter Lunar Aitken.

Los orbitadores llevan sofisticados detectores para hacer todo tipo de mediciones del objeto que orbitan.
Así es cómo estudian su atmósfera y su suelo. Pero con la ayuda de la gravedad, no sólo se mantienen en órbita, sino que pueden analizar qué hay bajo la superficie.
Recordemos que la fuerza de gravedad o el peso del satélite, es la fuerza que lo mantiene en órbita a una cierta altura y velocidad. Esta fuerza depende de la masa del cuerpo y del satélite, por lo que una mayor cantidad de masa hará que el satélite sienta mayor atracción por parte del cuerpo que está orbitando a cierta altura.
Los objetos naturales que son orbitados, no tienen por qué tener su masa uniformemente distribuida. De esta manera, cuando un satélite viaja sobre el suelo de un objeto, las regiones de mayor concentración de masa alteran su órbita. Es entonces cuando el satélite se acelera y su altura presenta variaciones por los tirones gravitatorios que siente por la mayor cantidad de materia debajo de él.

Esto fue confirmado por las misiones LRO (orbitador de reconocimiento Lunar) y GRAIL (misión de estudio de la gravedad de la Luna).
Algunos cráteres Lunares muestran anomalías gravitatorias, pero el caso más llamativo está dado por el cráter Aitken, en el polo sur Lunar en la cara oculta.

File:AitkenCraterLOC.jpg

Mapa donde se aprecia el cráter Aitken – Crédito NASA.

Con diámetro de casi 2000 Kms. y una profundidad de varios Kms., tiene una edad de 4000 millones de años. Muestra evidencias gravitacionales de tener una colosal masa bajo el suelo de unas 5 veces la masa de la mayor isla de Hawaii (2×1018 Kgrs., un 2 seguido de 18 ceros).
Unos piensan que se trata de cristales muy densos, pero no se explican cómo llegaron a estar allí.
Otros estiman que se trata de una masa de Hierro y Níquel que sería el núcleo de un objeto que impactó en la Luna, aunque tampoco todos están convencidos de esta idea.

Muchos pensaban que el interior de la Luna, aún está lo suficientemente caliente como para mantener convecciones de materia bajo la corteza. Pero de ser así, esta masa debería haberse hundido y fusionado con el núcleo. Luego, el interior Lunar debe estar más frío de lo pensado.

Referencia:

Fuente:

pdp.

La juventud no tan tranquila de la Luna.

La anortosita en un tipo de roca que se encuentra en la Tierra y también en la Luna.
Allí es responsable del gran brillo de nuestro satélite natural.
En sus comienzos, la Luna estaba cubierta por un Océano de Magna Lunar, o sea, roca fundida que, luego de enfriarse, dio origen al Manto que rodea al núcleo y a la corteza Lunar sobre éste.
Se pensaba que ese proceso de enfriamiento fue “tranquilo” hasta la época del bombardeo pesado tardío, donde la Luna y la Tierra sufrieron una intensa y larga lluvia de meteoritos, asteroides y cometas hace unos 4 mil millones de años atrás.

En una roca Lunar traída a Casa por la misión Apollo 16, se encontró anortosita.

Imagen de la roca Lunar traída por la Apollo 16 – Clast 32 indica la incrustación de anortosita – Crédito: AGU.

Lo interesante es que esta muestra ofrece evidencias de haberse enfriado rápidamente y no en un proceso lento como se pensaba. Habría pasado de unos 800°C a 250°C en muy poco tiempo considerando escalas de tiempo planetarias.

El único proceso por el cual esta roca pudo dejar las partes interiores de la corteza y quedar expuesta enfriándose con mayor rapidez, es un gran impacto meteórico o asteroidal hace unos 4300 millones de años. Eso demuestra que el proceso de enfriamiento Lunar no fue tan lento y “tranquilo” como se suponía.

Referencia:

Fuente:

pdp.

El Mar de la Tranquilidad, donde descendió el Eagle del Apollo 11.

La Luna es el objeto natural del cielo más cercano que tenemos.
El 20 de julio del ‘69, Neil Armstrong pisó su suelo siendo el primero en hacerlo.
Al respecto hay algunas discusiones.
Efectivamente, en esa fecha alunizó el módulo lunar Eagle de la misión Apollo 11, pero los astronautas no salieron del módulo sino luego de algunas horas posteriores al descenso. Según algunos, para cuando Armstrong lo habría hecho, ya serían las primeras horas del 21 de julio del ‘69.

Pero eso es un detalle menor.
Lo interesante es reconocer el histórico lugar en la luna, incluso a simple vista.
En Ella ha regiones de su superficie llamadas mares. Son regiones llanas formadas por la solidificación de la lava que brotó a través de fracturas en la corteza Lunar durante la juventud de nuestro Satélite.

Mapa Lunar

Imagen publicada en Astronomía Sur

El descenso del Eagle se realizó en una región ubicada al Sur del Mar de la Tranquilidad.

conejito

Imagen crédito: Soerfm on Wikipedia

Este sitio puede ser observado a simple vista sobre todo en Luna llena, claro que sin los detalles que nos brindaría un telescopio.

Vista desde el Hemisferio Sur, la Luna parece mostrarnos la figura de un conejo con sus orejas levantadas y mirando hacia el Oeste; nuestra izquierda.

conejitoSur

Luego, el sitio del descenso está en la parte inferior de la oreja del conejo hacia nuestra derecha.

Referencias:

pdp.

Gran Bertha y su material Terrestre.

No es raro hallar rocas de un mundo en otro.
En la Tierra se han hallado rocas de Marte. Tal es el caso de la catalogada como ALH84001 hallada en la Antártida a fines de 1984 (https://es.wikipedia.org/wiki/ALH84001). También se originaron en Marte las conocidas como Nakhlites halladas en Egipto (pdp, 05/oct./2017, Nakhla y los Nakhlites, https://paolera.wordpress.com/2017/10/05/nakhla-y-los-nakhlites/).
La catalogada como NWA7325, es altamente probable que provenga de Mercurio (pdp, 04/feb./ 2013, NWA7325 podría ser un pedazo de Mercurio, https://paolera.wordpress.com/2013/02/04/nwa-7325-podra-ser-un-pedazo-de-mercurio/)
Cuando un impacto meteórico arroja material violentamente, éste puede escapar del planeta, sobre todo si es de baja baja gravedad, y luego de vagar por el espacio interplanetario, cae en Casa.
La pregunta es: ¿pueden haber rocas Terrestres en otros mundos, expulsadas de aquí por procesos de este tipo? – Parece que la respuesta es afirmativa.

La misión Apollo 14 a la Luna, trajo a Casa una roca clasificada como 14321, familiarmente conocida como Gran Bertha (Big Bertha).

granbertha

Imagen de Gran Bertha (señalada por la flecha) hallada por Alan Shepard. Crédito NASA.

Con una masa de 9 Kgrs. y unos 32 cms. de ancho, fue hallada y recogida a unos 300 mts. del cráter de impacto Cone. Éste se encuentra entre los cerros que cruzan el cráter Fra Mauro de unos 80 Kms. de ancho.
El Mar Imbrium, es una planicie de 1000 Kms. que se formó de un tremendo impacto que rajó la superficie Lunar hasta la corteza permitiendo que la lava aflore y se solidifique. El material elevado en el impacto, cayó sobre Fra Mauro colaborando con la formación de cerros en su interior.

De esta manera, esa región es rica en material de la corteza Lunar.

Gran Bertha fue analizada y se encontró que contiene varios componentes. Entre ellos, hay Titanio y Circón con características difíciles de darse en la Luna. Esas características son comunes en la Tierra. Así es como Gran Bertha es muy probable que contenga material Terrestre.
Con una edad de unos 4 mil millones de años, su origen se ubica en la juventud de la Tierra cuando aún estaba caliente. Un impacto pudo arrojar material al espacio, el que cayó en la joven Luna, la que entonces estaba a la tercera parte de su actual distancia.
Así, Gran Bertha se formó con esos materiales como parte de ella en la corteza Lunar quedando expuesta luego del impacto que dio origen al Mar Imbrium.

Referencia:

Fuente:

pdp

¿Salida de la Tierra por el horizonte Lunar?

Hay muchas imágenes de la Tierra desde el Espacio, y por supuesto, entre ellas se encuentran las de la Tierra vista desde la Luna.
Es muy conocida la que obtuvieron los astronautas de la Apollo 8, la titulada “Earthrise” (salida de la Tierra). En esa imagen se aprecia a nuestro Planeta “saliendo” por el horizonte Lunar.

Earthrise

Crédito: NASA.

Pero no es la primera en su especie.

Veamos estas otras.

Crédito: NASA

Se trata de una salida de la Tierra por el horizonte Lunar del año 1966.
Las imágenes fueron tomadas por el satélite Lunar Orbiter 1 de NASA en órbita alrededor de nuestro satélite natural.

Pero… ¿puede realmente haber una salida de la Tierra por el horizonte Lunar?, de hecho eso parece en las imágenes. La Tierra está más elevada en el horizonte en una imagen que en otra.
Eso no debería pasar. La Luna está gravitacionalmente bloqueada, o sea que, como ya sabemos, ofrece siempre la misma cara a Nosotros. Así, la posición de la Tierra en el cielo Lunar debe ser siempre la misma para un observador en el suelo selenita.

Y eso es lo que sucede, pero en este caso, el observador no está quieto en el suelo. El orbitador, se está moviendo. En el momento de obtener las imágenes, estaba en un lugar de su órbita en el que su movimiento tangencial se dirigía casi hacia nosotros. Así, la Tierra aparece más alta en el Horizonte en cada imagen, porque el orbitador estaba en diferentes posiciones respecto Nuestro en el momento de obtener cada foto.

Referencia:

pdp.

La erosión en la Luna.

La erosión es un sutil proceso de desgaste.
Las partículas en los extremos puntiagudos y en filosas crestas, se encuentran en un equilibrio inestable. Son las primeras en desprenderse ante la menor acción ejercida sobre ellas, por ejemplo, por parte del flujo de algún fluido como ser agua o masas de aire.

En planetas como el Nuestro hay erosión que modifica el suelo. Ese trabajo está dado principalmente por el viento. Por este motivo, los cráteres en la Tierra no sólo son pocos comparados con otros miembros del Sistema Solar, sino que también están erosionados por el viento y disimulados por la vegetación y la acción de los terremotos y vulcanismo.

En la Luna no hay viento, pero sí hay erosión y lunamotos; ambos modificadores del suelo.
La erosión está ejercida por la acción de micrometeoritos y las partículas del viento Solar, los que impactan y desplazan a las partículas del fino polvo Lunar.
Si bien ese proceso es muchísimo más lento que en Casa, en la Luna no hay apuro, allí, estos agentes tienen todo el tiempo necesario.
Los lunamotos están causados por la acción gravitatoria entre la Luna y Nosotros, sobre todo en épocas de máximo acercamiento (periastro). Éstos se encargan de mover el suelo reacomodando todo lo que se pueda mover, lo que a su vez rellena los pequeños cráteres.
Los grandes impactos no sólo producen un cráter, sino que también pueden producir sacudones en el terreno, lo que al igual que un lunamoto, reacomoda material liviano.

En imágenes obtenidas por el Orbitador de Reconocimiento Lunar (LRO) se observan cráteres de diferentes edades y por lo tanto erosionados de manera distinta. Los cráteres más “frescos” suelen tener sus picos centrales más finos (pdp, 21/ago./2015, Algo sobre la formación de los cráteres de impacto, https://paolera.wordpress.com/2015/08/21/algo-sobre-la-formacion-de-los-crateres-de-impacto/). Pero en general, hay regiones donde la erosión es mayor que en otras. Eso implica que en ellas, el material es más liviano y susceptible al proceso de erosión y reacomodamiento; por ejemplo, el valle Taurus-Littrow.

Imagen del valle Taurus-Littrow donde hay cráteres erosionados. Arriba a la derecha se aprecia el cráter Clerke – Crédito:  NASA/GSFC/Arizona State University.

Se estima que la erosión en la Luna está entre 0,0006 cm al año y 0,000001 cm anuales.

Referencia:

Fuentes:

pdp.

El recalentamiento Lunar.

Los objetos astronómicos son aquellos que se estudian a la distancia.
Cuando llegamos a ellos de alguna forma, pasa al campo de la Geofísica (o se lo comparte con ella). Ese es el caso de la Luna, entre otros tantos objetos.
Cuando llegamos allá, dejamos una serie de instrumentos que enviaban a Casa datos de la Luna; en particular de su superficie y sub-superficie. Desde el año 1971 hasta el ‘77 se recopiló información de esos instrumentos, mucha de la cual se perdió en… un error Humano. Por suerte se pudo recuperar algunos datos hasta el año ‘74 y se encontró que la temperatura en las regiones donde alunizaron las misiones Apollo 15 y 17 aumentó unos 2ºC.
¿Qué pasó que antes y después de nuestra visita aumentó la temperatura en la superficie y sub-superficie Lunar?
Bien, pasó precisamente el Hombre.

Imagen del sitio de alunizaje de la misión Apollo 17. Se observan claramente los rastros dejados por los astronautas como marcas obscuras en la superficie. Crédito: Orbitador de Reconocimiento Lunar – NASA.

El suelo Lunar está cubierto de regolitos; polvo y pedregullo capaz de reflejar la luz Solar al espacio (https://es.wikipedia.org/wiki/Regolito).
Cuando los astronautas caminaron y trabajaron en la superficie, desplazaron ese material del suelo, dejando expuesto material obscuro. Ese material, como obscuro que es, absorbe energía Solar y eso hace que aumente la temperatura en esas regiones.

Referencias:

Fuente:

pdp.