Archivo de la etiqueta: big bang

El origen de la materia en el Universo (rompiendo simetrías).

Artículo corregido el 10/ago./2018 a las 14:45 HOA (GMT -3).
En el Universo apareció la materia de la que todo está hecho, incluso nosotros, cuando dejaron de valer ciertas condiciones.
En la Naturaleza hay simetrías. Éstas son condiciones que se cumplen (o deberían hacerlo) en diversas situaciones (https://es.wikipedia.org/wiki/Simetr%C3%Ada_en_f%C3%Adsica).

Llama la atención la ausencia de antimateria en Universo. Se congetura que cuando apareció la materia, las leyes Físicas no eran las mismas para la materia que para la antimateria y, por falta de simetrías, la antimateria se aniquiló con parte de materia generando otras partículas (pdp, 09/mar./2017, La violación CP explica la abundancia de materia sobre la antimateria, https://paolera.wordpress.com/2017/03/09/la-violacion-cp-explica-la-abundancia-de-materia-sobre-la-antimateria/).

También resulta llamativo la existencia de partículas sin masa.
¿Puede existir una partícula si no tiene masa?
Sí, puede.
Cuando vemos la conocida ecuación E=mC2, donde m es la masa de un objeto y C la velocidad de la luz, resulta que E es la emergía almacenada en esa masa, o sea la necesaria para crearla; luego, la masa es una forma de energía. O sea que una partícula puede existir en forma de energía almacenada de alguna manera y aparecer con masa cuando se mueve a la velocidad de la luz. Por ejemplo: el fotón (partícula de luz – energía), que en reposo no tiene masa y la adquiere cuando aparece con velocidad C. Otra partícula sin masa en reposo es el gluón, que sirve de unión (glue = pegamento en inglés) entra quarks para formar neutrones.

¿Pero de donde provino la materia del Universo?
Veamos.

Ilustración de evolución del Universo. Nada de esto se habría dado sin la aparición de la materia. Crédito: NASA / CXC / M. WEISS

Cuando el Universo se expandió en el Big-Bang, éste comenzó a generar trama de espacio – tiempo. En ese proceso aumentó la energía obscura pero a cambio otros niveles de energía comenzaron a disminuir, proceso por el cual el Universo aceleraba su expansión mientras se enfriaba (pdp, 05/ago./2018, Sobre el origen de la energía obscura, https://paolera.wordpress.com/2018/08/05/sobre-el-origen-de-la-energia-obscura/).

Entre los niveles energía que disminuían estaba la del campo de Higgs (en honor a Peter Higgshttps://es.wikipedia.org/wiki/Peter_Higgs). Debajo de un determinado valor, muy pequeño aunque no nulo, comenzaron a romperse ciertas simetrías. En esas condiciones, de la energía almacenada en el campo de Higgs, se produjeron 4 eventos.
De dos de ellos se generaron partículas con masa y con cargas eléctricas. De las otras dos se generaron partículas sin carga; una fue el fotón sin masa en reposo y la otra ganó masa dando origen al bosón de Higgs. Luego, moviéndose y chocando a gran velocidad, todas ellas fueron generando la materia y las estructuras de ella que hoy observamos.

Fuente:

pdp.

Anuncios

Sobre el origen de la Energía Obscura.

Es útil explicar la expansión acelerada del Universo, cómo interviene la energía obscura y si es posible, explicar su origen.
Eso es lo que trataré de hacer con lo que se conjetura a mediados del 2018.

Ilustración de Universo crédito de JINYI YANG, UNIVERSITY OF ARIZONA; REIDAR HAHN, FERMILAB; M. NEWHOUSE NOAO/AURA/NSF

La expansión.
Sabemos que el Universo nació del Big-Bang, donde todo estaba contenido en un punto (singularidad). Supongamos tres puntos: A, B, C. Nosotros estamos en A y para simplificar el problema, supondremos una expansión en una sola dirección. Sea que luego de un segundo, B está 1m. a nuestra derecha y C está 1m. a la derecha de B, o sea a 2m. de nosotros. Si entonces, nosotros en A, observamos el universo, le mediremos una edad de 1 segundo y veremos que B se nos escapa a 1m/seg. y C (a 1m. de B y a 2m. de nosotros) se escapa a 2m/seg. ya que esas fueron las distancias recorridas en el segundo que hace que comenzó todo.
Esto será igual no importa donde nos encontremos por el principio cosmológico que establece que el Big-Bang se dio en todas partes al mismo tiempo (pdp, 20/jun.2014, El Principio Cosmológico, https://paolera.wordpress.com/2014/06/20/el-principio-cosmologico/)
Concluimos entonces que nuestro universo se expande con velocidad constante, y debido a eso, los objetos lejanos se escapan con velocidades que crecen linealmente con la distancia.
Pero en realidad no es así lo que se observa. Los objetos lejanos se escapan con velocidades cada vez mayores con la distancia, las que no aumentan linealmente con ella. Luego hay una aceleración en la expansión, lo que implica una fuerza, la que implica trabajo, o sea energía. Como no sabemos cual es su origen, la llamamos energía obscura.

Algunos conjeturaron un origen rotacional para esa energía. O sea que se trata de una energía dada por una aceleración centrífuga en un Universo en rotación. Como los objetos se alejan entre sí, la gravedad mutua disminuye y no alcanza a compensar la fuerza centrífuga (pdp, 09/mar./2016, La energía obscura como efecto de un Universo en rotación, https://paolera.wordpress.com/2016/03/09/la-energia-obscura-como-efecto-de-un-universo-en-rotacion/)

Pero puede ser que la energía obscura sea inherente al  espacio, parte fundamental del mismo.
Veamos eso.

Trabajo y energía.
Si queremos mover una mesa, le aplicamos una fuerza empujándola. Esa fuerza realiza un trabajo en la dirección de movimiento (trabajo positivo), el que se traduce en energía cinética de la mesa (la mesa se mueve). Pero en las patas de la mesa aparece una fuerza de rozamiento o fricción con el suelo que ejerce trabajo en contra del movimiento (trabajo negativo). Este trabajo transforma parte de la energía en calor por lo que la mesa pierde velocidad y debemos seguir empujándola. Así, el trabajo de nuestra fuerza se transforma en energía cinética para la mesa y en calor por fricción que es absorbido por el suelo, las patas de la mesa y el aire. O sea que el trabajo es energía y ésta se conserva, se transforma pero no se pierde.

Un Universo dominado por materia y radiación, se comporta muy parecido a un gas a cierta temperatura en un recipiente.
Las moléculas del gas se mueven y chocan con las paredes del recipiente. En este proceso, transforman energía cinética en trabajo para expandir el volumen que las contiene. Luego de un tiempo, las moléculas gastaron su energía en trabajo y la expansión se frena.
En el caso de un Universo de este tipo, la expansión lleva velocidad constante y eventualmente podría terminar deteniéndose. En este último caso, la paciente gravedad comienza la contracción.

Pero un Universo dominado por energía obscura se comporta de manera opuesta.
En la expansión se va generando más trama de espacio y en ese proceso aparece energía como resultado de un trabajo (negativo) sobre esa expansión.
De esta manera, la energía obscura es propia del la trama del espacio. Así, ésta aumenta con la expansión a medida que se genera más trama espacial, manteniendo constante la densidad de energía (energía por unidad de volumen). Esto resulta en un aumento de la energía en el Universo. Tal vez la conservación no se dé a escalas cósmicas. Luego, de alguna forma, esa energía es aprovechada para acelerar a los objetos lejanos.

Fuente:

pdp.

¿En el Multiverso hay muchos Universos?

La Física Cuántica, analiza los escenarios microscópicos.
En esos ambientes donde las partículas son las que dominan, éstas pueden comportarse como tales o como ondas, y la energía está discretizada; o sea que puede tomar ciertos valores, no cualesquiera.

En la búsqueda de cómo nació el Universo, el modelo se va actualizado a medida que se van descubriendo nuevos elementos más sofisticados.
Así es como para explicar el origen del Todo, la cuántica colaboró en la explicación del origen de las partículas que conforman la materia. Como éstas se comportan como ondas, apareció la Teoría de Cuerdas (https://www.astrobitacora.com/teoria-de-cuerdas/), la que dio paso a la de Branas (o menbranas). Esta teoría admite varias soluciones, cada una corresponde a un Universo, luego existiría un Multiverso, dentro del cual está el nuestro.

Ilustración crédito de Shutterstock/Juergen Faelchle.

Es más, la mancha fría observada en la radiación de fondo de micro-ondas, según los adeptos a este modelo de Multiversos, podría ser un punto de contacto entre nuestro Universo y otro adyacente (pdp, 26/abr./2017, Quizás un Universo exótico necesite una explicación exótica, https://paolera.wordpress.com/2017/04/26/quizas-un-universo-exotico-necesite-una-explicacion-exotica/).

Pero sucede que la cantidad de soluciones implican una gran cantidad de Universos, ¿cuántos?, bien, 10500, o sea un 1 con 500 ceros. ¿Esos son muchos Universos o pocos? ¿Tenemos idea de lo que estamos diciendo?

Aquí es donde las opiniones se dividen.
Veamos.

Por un lado, están los que piensan que no se puede explicar las características de nuestro Universo en forma satisfactoria entre tantos Universos. En un Multiverso tan poblado, cada uno de los Universos (y el Nuestro) serían una situación aleatoria. Es decir que la Física en cada Universo sería diferente y al azar. Más; muchos de ellos serían matemáticamente inconsistentes, y por lo tanto, prohibidos.

Por otro lado, están los que aceptan eso y piensan que todos esos Universos serían posibles; después de todo, no sería la primera vez que se observa orden en el caos de la aleatoriedad.
Hay diferentes tipos de estrellas, incluso de las más exóticas (de neutrones, agujeros negros y asociaciones de diferentes tipos). Todo depende de su masa y ese valor es un valor aleatorio.
Los planetas se encuentran a determinadas distancias de sus estrellas, lo que está dado por las leyes de Kepler (https://www.fisicalab.com/apartado/leyes-kepler#contenidos). Pero esas distancias dependen de la masa y velocidad de cada planeta, lo que se dio al azar en su formación.
Luego, extrapolando esto, no sería raro un Multiverso con características aleatorias donde se dan estabilidades y eventos que implican energías de varios tipos, incluso la obscura (responsable de la aceleración en la expansión del Nuestro.)

Bien… el debate continua y eso es muy bueno.

Referencia:

Fuentes:

pdp.

PSO 352-15, el más brillante de la época de la re-ionización (a jul.2018)

Los lejanos y brillantes cuasares (u objetos cuasiestelares) resultaron ser núcleos activos de galaxias lejanas.
Así, toda galaxia tiene uno en su centro, o sea un núcleo cuya actividad está dominada por el agujero negro supermasivo de su centro. Como la luz tarda en llegarnos, vemos a las galaxias lejanas como eran en un principio. Luego, los cuasares nos sirven para estudiar cómo eran estas estructuras estelares cuando comenzaban a formarse aunque en la actualidad sean galaxias maduras.

El cuasar PSO J352.4034-15.3373 (PSO 352-15) está a 13 mil millones de años luz (AL) de Nosotros; o sea que lo vemos como era hace ese tiempo atrás. Como el Universo tiene casi 14 mil millones de años de edad, ese objeto es uno de los primeros en formarse.

The light in this image emanates from a supermassive black hole at the center of a galaxy 13 billion light-years away.(Credit: Momjian, et al.; B. Saxton (NRAO/AUI/NSF))

Imagen en ondas de radio de PSO 352-15 (objeto central) de los chorros de materia a sus lados. Crédito:  Momjian, et al.; B. Saxton (NRAO/AUI/NSF).

Se observa un cuasar o núcleo galáctico activo y su imagen está acompañada por la de los chorros de materia y energía que emite, todo en un espacio de unos 5000 años luz de largo.

Por su edad, se encuentra en lo que se conoce como la época de re-ionización.
Al principio, toda la materia estaba ionizada, es decir, dividida en las partículas componentes de los átomos. Con el colapso que abriría el camino a la formación de estrellas y objetos masivos, esas partículas se combinaron en los átomos de Hidrógeno y Helio. Con el nacimiento de las primeras estrellas, agujeros negros y sistemas estelares protogalácticos, la energía radiada por esos cuerpos se encargó de volver a partir los átomos, o sea re-ionización (pdp, 05/feb./2015, Big-bang, la época obscura y la re-ionización, https://paolera.wordpress.com/2015/02/05/big-bang-la-epoca-obscura-y-la-re-ionizacion/).
O sea que cuasares como éste, son los responsables de absorber y limpiar sus vecindades de materia y de ser unos de los actores principales de la época de la re-ionización.

PSO 352-15 no es el cuasar (o galaxia) más lejano observado, título que le corresponde a GN-z11 a 13400 millones de AL de Casa, pero sí es el más brillante de aquellos objetos.
De esta manera, es uno de los mejores candidatos a ser estudiado y saber más de aquellas épocas.

Referencia:

Fuentes:

pdp.

Estudiando la evolución de G.

Las constantes son cantidades que no varían bajo diversas condiciones; son permanentes.
Hay constantes Universales. Son aquellas que tienen el mismo valor en todas partes; en todo el Universo.
Una de ellas es la velocidad de la luz en vacío. La pregunta es: ¿siempre fue de 300 mil Kms./seg.? Cuando el Universo se expandió, la luz llenó todo por completo logrando que tenga la misma temperatura en toda su extensión. Hoy en día, el Universo tiene 14 mil millones de años. La luz viajando siempre a su velocidad constante, recorrió 14 mil millones de años luz (AL).
Así, si observamos en una dirección, veremos la radiación de fondo producida en el origen de Universo que nos llega de 14 mil millones de AL. Si observamos en la dirección opuesta, observaremos lo mismo. O sea que la radiación de fondo, viajó 28 mil millones de AL en el tiempo que debería haber viajado 14 mil millones de AL.
Una explicación es que la velocidad de la luz era mayor en los orígenes del Universo, ganándole a la gravedad, la que hoy en día, se supone que viaja a la misma velocidad que la luz ya que ésta es un límite físico. A esto se lo conoce como el problema de horizontes (pdp, 24/nov./2016, El problema de horizontes…, https://paolera.wordpress.com/2016/11/24/el-problema-de-horzontes-y-la-velocidad-de-la-luz/).

Otra constante Universal, es la constante de gravitación (G) (https://es.wikipedia.org/wiki/Constante_de_gravitaci%C3%B3n_universal).

{\displaystyle G=6.674\times 10^{-11}\;{\cfrac {{\text{N}}\cdot {\text{m}}^{2}}{{\text{kg}}^{2}}}}

Valor de G en el sistema MKS.

Esa constante aparece en todo proceso relacionado con la gravitación. La pregunta es: ¿Siempre tuvo el mismo valor?; ¿es la misma en todas partes?, o sea ¿es realmente Universal?
Eso se puede verificar de dos maneras.

Una forma es a través de las supernovas (SNs). Esa colosal muerte explosiva de estrellas masivas, depende de la masa de la estrella. Su brillo aparente, obviamente depende de la distancia a ella.
El evento de SN, se debe al colapso gravitacional de la estrella masiva sobre ella misma, por lo que está implicada G. Todas las SNs tienen el mismo brillo intrínseco el que depende de su masa, lo que nos permite medir su distancia en base al brillo aparente observado.
Si los modelos nos dan la masa de la estrella precursora y si sabemos la distancia a ella, podemos estimar su brillo intrínseco y el valor de G.

Otra manera de estimar G es a través de las estrellas de neutrones (ENs).
Son estrellas masivas que colapsaron, estallaron y dejaron un núcleo compacto masivo muy comprimido, donde electrones y protones se unieron en neutrones.
Cuando dos ENs chocan, no sólo se libera energía sino que además se generan ondas gravitatorias como las que ya se han detectado.
En ese proceso, también está involucrada G.
Si los modelos nos permiten calcular las masas intervinientes en el evento y estimar la distancia a la fuente, podremos despejar el valor de esa constante.

Luego, podemos estimar G de dos maneras para diferentes distancias.
Eso permite saber dos cosas.
Primero: El valor de G en diferentes lugares del Universo.
Segundo: Su historia. Como la distancia hace que la información nos llegue luego de mucho tiempo, lo observado corresponde a épocas anteriores al Universo actual, tanto más cuanto más lejos. Así entonces, podremos saber el valor de G a lo largo de la edad del Universo.

En suma, los instrumentos actuales nos permitirán saber con buena exactitud, la evolución de G en diferentes lugares del Universo.

Fuente:

  • arXiv:1804.03066v1 [astro-ph.CO] 9 Apr 2018, Constraining the time variation of Newton’s constant G with gravitational-wave standard sirens and supernovae, Wen Zhao et al.
    https://arxiv.org/pdf/1804.03066.pdf

pdp.

Inestabilidades en el espacio-tiempo de Friedman explicarían el efecto de la energía obscura.

El aumento en las distancias a objetos lejanos nos indica que el Universo está en expansión.
Einstein supuso un Universo estático por lo que consideró la existencia de una constante cosmológica en sus ecuaciones.
Esa constante fue eliminada por el mismo Einstein cuando se encontró que existía una expansión, oportunidad en la que reconoció que se había equivocado. Cuando se observó una aceleración en esa expansión, la constante volvió, claro que con “otro aspecto”.
Es lógico hallar una expansión si el Universo nació de una gran explosión. Pero la gravedad debería estar frenándola, y a cambio, se observa que se expande cada vez más rápido. Esa expansión acelerada es producto de una energía de origen desconocido por lo que se la llama energía obscura.

Video: The Universal Balance of Gravity and Dark Energy Predicts Accelerated Expansion.

Publicado el 16 may. 2016

Se mostraron varios modelos con el fin de explicar lo que sucede.

Se llegó a considerar un Universo en rotación, donde la aceleración centrífuga vencía a la gravitatoria provocando un aceleración resultante en el alejamiento de los objetos lejanos (pdp, 9/mar./2016, La energía obscura como efecto de un Universo en rotación, https://paolera.wordpress.com/2016/03/09/la-energia-obscura-como-efecto-de-un-universo-en-rotacion/).

El espacio-tiempo de Friedman (https://es.wikipedia.org/wiki/M%C3%A9trica_de_Friedman-Lema%C3%AEtre-Robertson-Walker), es un modelo que describe nuestro Universo considerándolo homogéneo e isótropo (iguales propiedades en todas direcciones). Con algunas variaciones de esas ecuaciones, se desarrolló un modelo con raíces en la Termodinámica conocido como Universo Cardassiano. Si bien reproduce lo observado, no tiene sólidas bases teóricas que lo respalden (pdp, 29/may./2017, El modelo Cardassiano de Universo, https://paolera.wordpress.com/2017/05/29/el-modelo-cardassiano-de-universo/).

Ahora, para noviembre del 2017, se piensa que las ecuaciones de originales de Einstein son correctas y no es necesaria la constante relacionada con la aceleración en la expansión.
El Universo se expande en un espacio-tiempo de Friedman que no es estable.
En ese modelo de espacio-tiempo, se supone que la materia está distribuida uniformemente (homogéneo), lo que no sería tan así.
De esta manera, cualquier variación en la densidad de materia o en el curso de un cuerpo (galaxia), provocará una “inestabilidad local” que dará como resultado un “empuje” asociado a una aceleración en la expansión. Curiosamente, y en teoría, se encontró que en esas inestabilidades locales aparecen aceleraciones comparables a las que se dan en el marco de la energía obscura. Bajo este punto de vista, la energía obscura no es necesaria para producir la aceleración en la expansión observada.

Referencia:

Fuente:

pdp.

Qué es el Sector Obscuro del Universo (retórica científica).

La retórica consiste en expresiones ricas en imágenes para dar una explicación más elegante y figurativa.
Hay una retórica científica que a veces lleva a confusiones.

Se dice que algo es obscuro cuando no refleja ni emite luz. Es por eso que llama materia obscura, a aquella que no puede verse pero se la detecta gravitacionalmente. Aquí el término “obscura” hace referencia exacta a una propiedad de esa materia.
Cuando se habla de energía osbcura, se hace referencia a una energía responsable de la expansión del Universo. En este caso se le dice “obscura” porque se desconoce su naturaleza. Aquí hay retórica ya que no tiene sentido hablar de una energía que no brilla de manera alguna.

En nuestro Universo observable, hay partículas que son bien conocidas tales como los fotones, electrones, protones y neutrones entre otras. Todo está explicado en lo que se conoce como el Modelo Estándard.
Este modelo está siendo retocado permanentemente para explicar nuevas observaciones. Se llegó a un punto en que se hacen necesarias partículas aún no observadas para explicar ciertas propiedades del Universo que nos rodea. Se las llama partículas obscuras retóricamente hablando por desconocerse mucho de ellas y porque no hemos podido detectarlas aún.
Al conjunto de estas partícula se lo llama Universo Obscuro o Sector Obscuro del Universo. Otra vez se utiliza retórica, ya que no se trata de un rincón particular del Universo ni otro universo paralelo y exótico. Es como decir que la mente de un músico genial es un universo de inagotables melodías.

Si las partículas obscuras están relacionadas con la que conocemos, entonces hay un vínculo entre el Sector Obscuro y el Universo observable dado por el Modelo Estándard.
A ese vínculo se lo llama Portal al Sector Obscuro.

New portal to unveil the dark sector of the Universe

Ilustración crédito de IBS

Otra vez aparece la retórica, ya que ese vínculo o portal es un conjunto de expresiones físicas y no un “agujero en el espacio” que nos lleva de un lugar al otro.

Entre las partículas obscuras podrían existir los fotones obscuros (dark photons). Serían partículas livianas similares a los fotones, las que al decaer (o desintegrarse) darían origen a partículas obscuras muchas de las cuales podrían ser responsables de la materia obscura.

Resumiendo.
Cuando se formó el Universo, éste era una sopa de partículas. Fuimos capaces de detectar muchas, recientemente detectamos el Bosón de Higgs completando el Modelo Estándard. Otras permanecen sin detectar en el Sector Obscuro. La observación del comportamiento de las partículas conocidas puede abrir un portal a ese Sector del Universo.

Referencia:

pdp.